
A Distributed Object-Oriented Telescope Control System
Based on RT-CORBA and ATM

José M. Filgueira
Control Group, GTC Project

Instituto de Astrofísica de Canarias
Email: jmfilgue@iac.es

Abstract

 The GTC project is in charge of the construction of
an optical-infrared 10-meter class telescope at the
ORM observatory in Canary Islands. First light will be by
the end 2002. The operating life of the telescope will
be over 50 years. The control system of the GTC will be
responsible for the management and operation of the
telescope, including its instrumentation. This paper
presents a first approach to the design of the control
system.

1 Introduction

 The continuous and rapid development of the
technologies related to hardware, software and
communications has permitted a greater complexity in
control systems. In their turn, the new techniques of active
and adaptive optics, the new methods of optimisation of
useful observing time and the programmes of continuous
evolution to ensure competitive telescopes capable of
assimilating future technological advances, present new
challenges in the design of control systems.

 The life cycle of the control system of the GTC will be
subject to a continuous flux of changes brought about by
different factors (evolution of the requirements, continuous
development of new instruments, correction of faults, etc.).
These factors must be taken on board with the minimum
impact possible on the availability of the GTC once it
enters operation. This will only be possible through the
selection and planning of an adequate technological
framework that enables these changes to be assimilated
throughout the entire life cycle of the telescope. In order
to accomplish this, the adoption of open ‘de facto’
standards like ATM, CORBA and POSIX becomes a key
point.

 In the past, the technologies, needed in order to achieve
the required network bandwidth pushed the adoption of
heterogeneous network architectures being based in
different technologies: FDDI, Ethernet, etc. This resulted
in complex and non-scalable solutions with fixed QoS
(Quality of Service). Recently ATM allows the
unification of all network communication requirements
into one network technology. This results in more flexible,
scalable, and easy-to-maintain networks. Additionally,
ATM provides other important advantages such as high
bandwidth, end-to-end QoS and virtual connections. This
makes ATM an appealing solution for real-time LAN based
control systems.

 CORBA [1] is a distributed object computing
middleware standard. It supports the development of
flexible and reusable distributed services and applications
providing independence of hardware platform, network
technology, operating systems and programming languages.
Current researches on RT CORBA (e.g. real-time event
services and end-to-end QoS guarantees) can provide an
effective architecture capable of supporting current control
systems while retaining their real-time behaviour. Recently,
several vendors have also recognized this issue and have
ported their ORB to real-time POSIX compliant OS
platforms.

2 Hardware architecture

 The hardware architecture of the control system will
consist of VME nodes with real-time processing capacity
connected directly to the physical devices of the GTC.
These connections will be able to use a varied set of
control buses (e.g. CAN bus, GPIB, Bitbus). Other higher-
level nodes will carry out co-ordination functions and
will offer critical services to the remaining nodes (e.g.
event dispatching, logging, monitoring, scheduling). Both
the VME nodes and the co-ordination units will be
connected by means of one or more high-performance
ATM switches to form the so-called control network. This
architecture will allow the dynamical configuration of
traffic so that each node has an adequate bandwidth for its
needs.
 ATM technology provides a series of important features:
wide bandwidth, end-to-end individual QoS, virtual
connections and flexible topology. These features will
allow the building of a system based on an open standard
with integrated communication services (data, images,
audio and video). This can lead to a reduction in cost,
greater flexibility and applications which are more
dynamical. Although Ethernet technology continues
to evolve rapidly (Gigabit Ethernet), it is still inadequate
for real-time traffic due to its unpredictable delays and the
lack of support to guarantee QoS. Moreover, ATM
constitutes a scalable technology (possibility of widening
bandwidths without modifying the topology of the network)
from 1.5 Mbps (DS-1) to 10 Gbps (OC-192c). At present,
there are products available from various manufacturers
working with speeds starting from 25Mbps, 155 Mbps
(OC-3c) and 622 Mbps (OC-12c). This will allow the
adoption of a homogeneous and scalable solution for all
the data-transmission needs of the GTC. The use of
physical fibre-optic interfaces will be equally important,
since these will provide protection against many of the

possible sources of electromagnetic interference, as well as
a large bandwidth.

3 Software architecture

 The adopted hierarchical structure will consists of five
layers; the service layers (base operating and middleware
services) provide the application domain independent
infrastructure which is common to all the components of
the control system. These layers isolate the application
from modifications of the hardware platforms, operating
systems and commercial off-the-shelf products (e.g.
database management systems). To this infrastructure, the
framework layer adds a set of specific domain frameworks,
control, planning and scheduling and data processing
forming the basis of a domain-specific software
architecture. These frameworks will provide adequate ‘hot-
spots’ for adaptation. The component layer adds highest-
level reusable binary components grouped into toolkits (e.g.
Image viewer). The application layer contains the final
applications (mainly built by the composition of the
underlying components) and the majority of the user
interfaces and interfaces with external systems.

3.1 Distributed architecture

 The architecture of the control system will consist of a
set of highly integrated systems distributed by means of
networks in a hierarchical organization. This hierarchy will
be organized by following the client-server model. There
will be a number of control points and, therefore, of
processors necessary for managing them.
 As in other application domains (avionics, tele-
communications, multimedia), the control system must
guarantee real-time capability with regard
to communication networks, as well as operating systems
and underlying middleware components, with the aim of
satisfying their QoS requirements. Applications in these
domains must be flexible and reusable to provide point-to-
point QoS guarantees. These flexibility and reusability
requirements drive the use of object-oriented middleware
like CORBA, MidART [2] ACE (Associative Computing
Environment) [3], ILU or DCOM (Distributed Common
Object Model). Although some operating systems,
networks and protocols at present support real-time
scheduling, they do not provide an integrated solution. At
present, there are various projects working on the
adaptation of this object-oriented middleware to hard real-
time systems (e.g. avionics) or systems with restricted
latency (e.g. teleconferences).
 The processing elements of the control system will use a
real-time implementation [4] of the CORBA standard for
communications between objects via the network. The
adoption of this client-server model, together with the
CORBA/IDL (Interface Definition Language) interfaces
and C++ and Java programming, will be in accordance
with recent developments in programming languages and
distributed architecture design.
 The basic mechanism consists of providing connections
and interoperability among different objects which reside

in different processors. This will be achieved by means of
the implementation of different distributed services:

• Object Services are interfaces for general services that
are likely to be used in any program based on
distributed objects.

• Common Facilities are interfaces for horizontal end-
user-oriented facilities applicable to most application
domains.

• Domain Interfaces are application domain-specific
interfaces.

• Application Interfaces are non-standardized
application-specific interfaces.

 The above object frameworks (see previous section) can
be implemented as collections of co-operating objects
categorized into Application, Domain, Facility, and Service
Objects. Each object in the framework will support, or will
make use of, some combination of Application, Domain,
Common Facility, and Object Service interfaces (e.g. via
interface inheritance or client requests).
 The possibility of providing server interfaces to other
systems will be considered, e.g. access to the Experimental
Physics and Industrial Control System (EPICS) [5] via the
channel access mechanisms or CDEV [6]. In this case,
EPICS devices can be represented as CORBA-compliant
device services.
 Access from the user interfaces to the distributed
services could be effected by means of stand-alone
applications or through the Internet Inter-ORB Protocol
(IIOP) already incorporated into some browsers. This will
permit the execution of user interfaces from any remote
platform.

4 Software engineering issues

• Analysis, design and object-oriented programming:
These techniques replace traditional data-directed
methods and functional decomposition (analysis and
structured design) by an integrated approach to the
analysis, design and implementation based on an object
model.

• Fast prototyping and iterative development: In a fast-
prototyping and iterative-development process [8.24]
an initial version of the system is rapidly constructed
with an emphasis on the areas of greatest risk.

• Architecture-directed development: In an architecture-
directed process, the objective is to achieve an
architecture which is resilient to changes in
requirements, within reasonable limits.

• Large-scale reuse: Object-oriented design and
architecture-directed development implicitly support
reuse; this is more effective when reasonably large
components are reused, such as subsystems and class
categories. Therefore, the analysis, design, integration
and testing of these components will also be reused.

• Improvement and control of the software process:
Experience with real-world large projects shows that a
highly integrated environment is necessary in order

to facilitate and reinforce the control of the
management of the process.

• Software first focus: The use of standards for open
systems will allow the postponement, until
the optimum moment in the project cycle, of the
choice of technologies (hardware platforms, operating
systems, network protocols and topology). This is
crucial if it is required to achieve an effective
compromise between functions, capabilities, cost and
planning in an area where technology can change
dramatically over the lifetime of the project.

• Object-oriented frameworks: An object-oriented
framework [7] is the skeleton of the architecture for a
problem in a given domain and provides opportunities
for the reuse of designs and code on a large scale,
reducing the time and cost needed for building an
application.

• Design patterns: A design pattern [8] describes a set of
co-operating objects united by certain relationships,
which are repeatedly encountered in the solution of
similar problems. One of the main interests in design
partners is the representation of knowledge of design
decisions in a domain; therefore, these can be reused.

5 Conclusions

 Although the cost of ATM is at present higher than
that of other solutions (although not by much in
comparison to switched Ethernet), the benefits in terms of
simplicity and architecture scalability permit a simpler
system and therefore cheaper software. Scalability allows
solutions to be found for all needs, avoiding the use of
different protocols for each need and the use of gateways
that can give rise to bottlenecks in the system.
 Moreover, the specification of interfaces will be very

important for sustaining and preserving investment in the
face of rapid technological change. For this purpose open
standards, such as RT POSIX or ATM, as well as CORBA
itself, will be used.

References

[1] Object Management Group 1995. ‘CORBA
Specification v.2’

[2] Mizunuma, I., Shen, C., Takegaki, M. 1996.
‘Middleware for distributed industrial real-time
systems on ATM networks’, 17th IEEE Real-Time
Systems Symposium.

[3] Schmidt, D. 1994. ‘The Service Configurator
Framework: An extensible architecture for
dynamically configuring concurrent, multi-service
daemons’, In Proc. Second International Workshop on
Configurable Distributed Systems, IEEE Computer
Society, 190.

[4] Harrison, T. H., Levine, D., Schmidt, D. 1997. ‘The design
and performance of a real-time CORBA Object Event
Service’. In Proc. OOSPLA’97 Conference, Atlanta
October 1997.

[5] Dalesio, L. et al. 1993. ‘The Experimental Physics and
Industrial Control System Architecture: past, present,
and future’, Proc. ICALEPCS’93.

[6] Chen, J., Heyes, G., Akers, W., Wu, D., Watson,
W. 1995. ‘CDEV: an object-oriented class library for
developing device control applications’, Proc.
ICALEPCS’95.

[7] ‘Leveraging Object-oriented frameworks-a technology
primer from Taligent’, Taligent White Paper.
Available form http://www.taligent.com.

[8] Gamma, E., Helm, R., Johnson, R., Vlissides,
J. 1995. Design Patterns. Element of Reusable
Object-oriented Software. Addison-Wesley.

